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Abstract— The Adaptive RED proposed by Fenget al . [5] is
shown to have small packet delay and queue length variation
for long-life TCP traffic such as FTP connection with a large
file size. However, a great portion of Internet traffic is short-
life web and UDP traffic. Most web traffic has a small file size
and its TCP session is mainly operated in the slow start phase
with a small congestion window size. Since the file size is small,
dropping short-life TCP (and UDP) packets is not very effective
in alleviating congestion level at a bottleneck router. From the
viewpoint of TCP, one or several packet losses in its slow start
phase lead to extra delay for retransmission and even cause
TCP timeout. This delay severely degrades the performance of
delivering short messages such as web pages and web browsers
experience a long waiting time even with a high speed network.
We first show that the Adaptive RED is vulnerable to these short-
life TCP traffic and propose a virtual parallel queue structure as
a new active queue management scheme (AQM). The idea is to
separate the long-life and short-life (including UDP) traffic into
two different virtual queues. The first queue is to run the drop-
tail policy and work for the short-life TCP and UDP packets.
In order to have a small mean delay, the service rate of this
drop-tail queue is dynamically determined by its virtual queue
length. The remaining long-life traffic is directed to an Adaptive
RED virtual queue. Even the available bandwidth is shared with
the drop-tail queue, the simulation results show that the queue
length variation of the RED queue is still located in a desired
region. Note that both virtual queues share the same physical
buffer memory. Those packets in the drop-tail queue will not
be dropped unless the shared buffer is overflowed. This parallel
virtual queue structure not only keeps the benefits of RED such
as high utilization and small delay, but also greatly reduces the
packet loss rate at the router.

Index Terms— Adaptive RED, AQM, Scheduling.

I. I NTRODUCTION

T HE RED (Random Early Detection) scheme has been
attracting a lot of attention for active queue management

in the network router. In order to have a small queuing delay, it
is desired to have a short mean queue length so that the total
buffer size in a drop-tail queue can not be large. However,
the Internet traffic is quite bursty so that small buffer routers
encounter a high packet loss rate. Moreover, the TCP protocol
dramatically reduces its flow rate in the congestion avoidance
phase when packets are lost. After a buffer overflow event in
a drop-tail queue, all connections sense packet loss and slow
down the transfer rate simultaneously. In order to prevent this

Research partially supported by DARPA through SPAWAR, San Diego
under contract No. N66001-00-C-8063.

global synchronization phenomenon and low link utilization,
many active queue management schemes such as RED are
proposed. The basic idea of RED is randomly dropping packets
to prevent buffer overflow. The dropping probability is a
non-decreasing function of the queue length so that more
packets will be dropped when the queue length is larger. The
connection at a high flow rate has a higher chance to get more
packets dropped and reduces its rate rapidly. This scheme
controls the flow rate of TCP connections and keeps the
queue length in a desired region. However, some simulation
results [3] have demonstrated that the performance of RED is
pretty sensitive to parameter settings. Based on the original
idea of RED, there are some modifications such as Stabilized
RED [8], Random Early Marking (REM) [1], Blue [4] and
Adaptive RED [5] [6]. The Adaptive RED scheme dynamically
updates the maximal dropping probability according to the
exponentially weighted moving average (EWMA) of queue
length, and makes itself more robust with respect to congestion
level. Based on [5] [6], we are motivated to consider UDP and
short-life TCP connections such as web traffic. Dropping these
kinds of packets is not only useless for controlling the flow
rate, but also wastes network resources and causes unnecessary
delay and retransmissions. In addition, the performance of
Adaptive RED is severely degraded by these short but bursty
connections. We first demonstrate the vulnerability of Adaptive
RED in this situation and propose a parallel virtual queue
structure for active queue management.

II. V ULNERABILITY TO WEB-MICE

In this section, we describe a scenario containing short-
life TCP (WEB), UDP (CBR) and long-life TCP (FTP)
traffic. The purpose is to demonstrate that the performance
of the Adaptive RED scheme is severely degraded by the
short-life web traffic. The network in our experiment has a
simple dumbbell topology with the bottleneck link bandwidth
C=3.0Mbps. One side of the bottleneck consists of800
web clients. Each client sends a web request and has an
Exponential distribution of think times with mean50s after
the end of each session. The other side contains800 web
servers, running HTTP 1.1 protocol and having aPareto
file size distribution with parameters(K=2.3Kbyte, α=1.3)
(mean10Kbytes). The round-trip propagation delay of HTTP
connections is uniformly distributed between (16, 240)ms.
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Note that the mean rate of the aggregate web traffic is around
1.2Mbps. There is one CBR traffic source which periodically
generates a1Kbytes UDP packet every50ms. Besides these
short web connections and UDP traffic, there are10 persistent
FTP connections sharing the bottleneck link with round-trip
propagation delay of64ms. Figure. 1 shows that Adaptive
RED works well with those FTP connections before the web
traffic comes in. At timet=100s, the CBR source and web
servers begin to share the bandwidth. Since the aggregate
web traffic is very bursty, the queue length of Adaptive RED
deviates dramatically from the desired region.

Since most web pages contain one or several very small
files, those TCP connections are almost operated in their slow
start phase during the session life. According to the TCP
protocol, the congestion control window is just beginning
to increase its size from the initial value and has a low
transmission speed. Dropping packets in the slow start phase
can not efficiently alleviate congestion level at the bottleneck
router. In other words, any blind random dropping/marking
policy such as RED is unable to effectively control the
congestion level without considering short-life TCP (and UDP)
traffic. Furthermore, losing one or two packets in the slow start
phase not only causes a very low throughput and extra delay,
but also leads to a high probability of connection timeout.
We desire to avoid this phenomenon especially for those
short and time-constrained messages. In addition, the Adaptive
RED scheme relies on average queue length to determine
the dropping probability and control the TCP flow rate. The
extra queue length perturbation contributed by the bursty web
traffic makes Adaptive RED increase/decrease its dropping
probability rapidly. This over-reaction causes a great queue
length variation and poor performance in packet delay and
loss.
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Fig. 1. Queue length of Adaptive RED: 10 FTP starting at t=0 and 800
Webs and 1 CBR starting at t=100s.

III. T WO VIRTUAL QUEUESSTRUCTURE: RED AND TAIL

POLICY

A. Motivation

Dropping short-life TCP and UDP packets in a RED queue
can not effectively alleviate the congestion, wastes network
resources, and causes unnecessary retransmissions and delay.
From the viewpoint of a web browser, a short-life TCP session
may only need several round-trip times to finish the whole

transmission. One packet loss in its slow start phase not only
causes extra round-trip time to retransmit the dropped packet,
but also immediately enforces TCP to leave its slow start
phase with a very small slow start threshold (ssthresh). When
the sender senses a packet loss,ssthresh will be reduced
to min(cwnd, rcv window)/2 and the newcwnd is also
decreased depending on different TCP versions. (For TCP
Reno, the new window sizecwnd = ssthresh and TCP enters
the Fast Recovery phase. For TCP Tahoe,cwnd = MSS
(maximum segment size) and TCP begins a new slow start
phase.) Since the original congestion window is just beginning
to increase its size fromMSS in its first slow start phase,
one packet loss during the initial several round-trip times
leads TCP to enter the congestion avoidance phase with a
very smallssthresh and cwnd. In the congestion avoidance
phase, TCP slowly increasescwnd (the increment is about
one MSS per round-trip time) from the currentssthresh.
Thus, losing one packet in the slow start phase causes TCP to
take a long time to complete a short message. In addition,
since the web traffic is assumed to be small but bursty,
these web connections usually experience a higher packet
loss rate (see the web packet loss rate of RED and drop-
tail queue in Table III). Note that the default initial value of
ssthresh is 64KB and packet size is1KB in this paper.
At a high packet loss ratePd=0.04 contributed by RED, the
probability of losing one or more packets in the slow start
phase is equal to1 − (1 − Pd)64 = 0.9267 (assume packets
are dropped independently). Therefore, most TCP connections
have at least one packet loss in their first slow start phase. For
example, assuming that the15th packet is dropped by RED,
the ssthresh decreases from64KB to 4KB and the new
congestion windowcwnd is decreased from8KB to 1KB
(Tahoe). The situation is getting worse if one packet is dropped
earlier (in the first 3 round-trip times). The congestion window
at this moment is so small that the sender may not have enough
data packets to trigger the receiver into generating three du-
plicate acknowledgements. If packets cannot be recovered by
this fast recovery scheme, TCP has to depend on the protocol
timer for error recovery. The default value of the protocol
timer is usually large and the delivery delay could be increased
dramatically by timeout events. Moreover, the probability of
losing two or more packets of the same congestion window in
the slow start phase still can not be ignored. These events also
lead to a high probability of TCP timeout and connection reset.
To demonstrate this phenomenon, we consider a small web
page which has90 packets to be transferred in a stand alone
environment. There is no other traffic sharing the bandwidth
and packets are dropped artificially. The simulation results in
Figure 2 show that TCP takes about4.81s to complete the
whole session ifPb =0.04. In comparison, in the loss free
case, this90Kbytes file can be delivered within1.18s. Table
I lists the mean and standard deviation of this delivery delay (in
sec.) with file size from30K to 210K bytes. Since most web
pages have their size located in this range, the web browser
will experience a long response time when the packet loss
rate is large. As mentioned previously, the performance of
the Adaptive RED scheme is also severely degraded by this
short but bursty traffic. It is natural to have a separate queue
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Fig. 2. Mean delivery delay of small filev.s. dropping probabilityPd

with file size30, 60, ...,210Kbytes, bandwidth3Mbps and round-trip time
128ms.

TABLE I

DELIVERY DELAY OF SMALL FILE : MEAN AND STANDARD DEVIATION

Pd 0.00 0.02 0.04 0.08
30KB 0.88(.0006) 1.60(1.88) 2.74(4.27) 5.88(7.79)
90KB 1.18(.0008) 2.79(2.39) 4.81(3.91) 9.24(6.30)
150KB 1.34 (0.0008) 3.51(1.90) 6.51(4.60) 13.38(8.87)

deal with the short-life TCP and UDP traffic. Since dropping
these packets can not effectively alleviate congestion level, but
severely increases delivery delay, it would be better to keep
them in the queue unless the total buffer (shared with the
other queue) is overflown. Hence, the queuing policy of the
first virtual queue is chosen to be drop-tail to minimize the
packet loss rate. In order to have a short delivery delay for
web browsers and UDP connections, the service rateC1(t)
is changed dynamically according to its virtual queue length
q1(t).

The second virtual queue is running the Adaptive RED
policy with the long-life TCP connections such as FTP with
a large file. Even if the available bandwidth of the second
queue is determined byC2(t)=C-C1(t), the Adaptive RED
scheme still works well in keeping its virtual queue length
q2(t) in a desired region. Note that the available bandwidth at
the RED queue is suppressed and controlled by the drop-tail
queue. When there is a heavy workload at the drop-tail queue,
C2(t) decreases quickly. FTP receivers experience a slower
packet arrival rate and send acknowledgement packets (ACK)
back slowly. Without increasing the dropping probability at the
RED queue, the slower ACK arrival rate from the receivers
causes FTP senders to reduce their flow rate automatically
without shrinking their control window size. On the other
hand, when the congestion level is alleviated, the RED queue
receives more bandwidth. Since the congestion window size
is still large in the FTP server, the throughput of FTP is
quickly recovered by a faster arrival rate of ACK packets
from the receiver. Since the TCP average throughput [7] [2]
is proportional to 1

RTT
√

Pd
, and theRTT is equal to the sum

of the round-trip propagation delay and the queuing delay.
Given the available bandwidth ofC2(t), there is a trade off
between dropping probability and queuing delay. We are able
to reduce the dropping probability and increase queuing delay
by dynamically adjusting the thresholds of Adaptive RED.

With this approach, we can keep the benefits of Adaptive
RED such as high (100%) link utilization. Furthermore, the
packet loss rate of the short-life TCP and UDP connections is
greatly eliminated by the drop-tail policy and a shared buffer.
The packet loss rate of long-life TCP traffic is also reduced
by the suppressed bandwidth, larger thresholds (longerRTT )
and a more stable average virtual queue length in the RED
queue.

B. Description

By following the basic idea of this RED+Tail policy, the
first problem is how to split the long-life traffic from other
short-life web traffic at the routers. To this end, the router
has to know the age or elapsed time of each TCP connection.
Unfortunately, this information is hidden in the TCP header
which is not available to the IP router. However, one may
roughly estimate the elapsed time by using the following
approach:

• When a packet from a new source-destination pair, which
is not seen by the router in the pastT sec arrives, we treat
it as a new TCP connection and identify this connection
as a short-life connection.

• Send the new connection packets to the drop-tail queue.
• Set a counter for the number of packets of this connec-

tion.
• If the cumulative packets number is greater than a

thresholdN , then we believe that the file size is large
enough and this TCP connection already has left its slow
start phase. We redirect the subsequent packets of this
connection to the Adaptive RED queue.

• Remove the counter if there is no packet arrival in the
last T sec.

Preliminary simulation results show that this approach suc-
cessfully prevents the small web traffic from entering the RED
queue. The probability of false alarm is less than0.02 in our
scenario. Since the web traffic has a small file size and a
short session time, there is no harm if the short-life connection
packets were misdirected to the RED queue after timeT .

Figure 3 shows the RED+Tail parallel queue structure in
the router. LetC1(t) andC2(t) denote the service rates of the
drop-tail queue and the Adaptive RED queue respectively. In
order to allocate bandwidth dynamically to both queues and
assign a desired region of queue length in the Adaptive RED
queue, we define the maximal thresholdmaxth i and minimal
thresholdminthi for i = 1, 2. The service ratesC1(t) and
C2(t) are given by the following algorithm:

• if q1 = 0, thenC1(t) = 0.
• if 0 ≤ q1 < minth1, thenC1(t):=C1min.
• if minth1 ≤ q1, thenC1(t):=min(C q1

maxth1
, C1max).

• C2(t) := C − C1(t),
where C is the link bandwidth. The parameterq1 denotes
the queue length of the drop-tail queue. The constantC 1max

preserves the minimum available bandwidthC − C1max for
the RED queue to prevent FTP connections from timeout.

IV. SIMULATION AND COMPARISON

In this section, we compare the Adaptive RED and
RED+Tail schemes with typical TCP performance metrics. For
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Fig. 3. Parallel Virtual Queue Structure for Active Queue Management.

the parameters of Adaptive RED, we employ the parameter
settings suggested by Floyd [6] (α and β of the AIMD
algorithm). We also implemented the RED+Tail scheme in
the ns2 simulator. The network topology and scenario were
already described in Section II. Table II lists the parameter
settings of the RED+Tail parallel queues and Adaptive RED
queue. Note that the virtual queues of the RED+Tail scheme
share the total physical buffer size,i.e. the packets in the
drop-tail virtual queue will not be dropped unless the physical
memory is full. The Adaptive RED is set in a ”gentle” mode
indicating that the dropping probability between(maxth 2,
2maxth2) is linear in(Pmax, 1).

TABLE II

EXPERIMENT SETTINGS

Queuei Buffer Size minthi maxthi α β
i = 1 160KB 2KB 30KB - -
i = 2 shared 20KB 80KB 0.01 0.9

Adapt. RED 160KB 20KB 80KB 0.01 0.9

The performance for a connection is evaluated by the packet
loss rate, delay and throughput. However, we focus on packet
loss rate and delay for web (short-TCP) and CBR (UDP)
connections, and place more concern on throughput for FTP
(long-TCP). We replace the Adaptive RED with RED+Tail
scheme at the router and redo the experiment of Section II.
The random seed of the simulator is fixed so that the processes
of web request and file size have the same sample path in both
experiments. Figure 4 shows the queue length of the RED+Tail
scheme, which demonstrates that the virtual queue lengthq2 is
quite stable and located in the desired region even after the web
and CBR traffic begin to share the bandwidth at timet=100s.
When a web burst arrives at the drop-tail queue, the queue
length q1 increases rapidly and most bandwidth is allocated
to serve the drop-tail queue for a short time. Meanwhile,
the available bandwidth is reduced at the RED queue so that
FTP clients experience a long packet interarrival time. As a
result, FTP servers receive acknowledgement packets slowly
and the data rate is automatically reduced without increasing
the dropping probability in the RED queue. Since the TCP
average throughput is proportional to 1

RTT
√

Pd
, the actual

dropping probability at the RED queue is also reduced from
4.15% to 2.75% by a longer queuing delay (0.184ms). This
scheme prevents the over-reaction behavior of RED in the
original Adaptive RED case and keeps the mean queue length
q2 still in a desired region. Figure 5 shows the packet loss rates
of FTP, web and CBR connection with Adaptive RED and
RED+Tail schemes. It is obvious that RED+Tail provides great
improvement in packet loss for web and CBR connections. The

TABLE III

PERFORMANCEMETRICS

Policy Loss % Delay Sec. Rate KB/s
RED+Tail:FTP 2.747 0.184 209.465
RED+Tail:WEB 1.278 0.114 144.455
RED+Tail:CBR 0.300 0.109 19.867

AdaptRED:FTP 4.149 0.143 217.531
AdaptRED:WEB 4.514 0.143 137.124
AdaptRED:CBR 3.950 0.141 19.140

DropTail:FTP 1.916 0.349 215.243
DropTail:WEB 4.234 0.340 138.983
DropTail:CBR 1.550 0.342 19.601

TABLE IV

SMALL FILE DELIVERY TIME: MEAN AND STANDARD DEVIATION

File Size 30KB 90KB 150KB
RED+Tail:WEB 0.88(0.13) 1.15(0.24) 1.64(0.85)
AdaptRED:WEB 2.42(1.21) 3.87(1.41) 7.86(4.44)
DropTail:WEB 4.00(1.69) 10.91(4.01) 17.15(4.15)

web loss rate is reduced from4.51% to 1.28% and CBR loss
rate is reduced from3.95% to 0.30%.

Figure 6 compares the packet delay. The mean queuing
delay of web and CBR packets in the RED+Tail scheme
is shortened by increasing the FTP packet delay. The web
and CBR packet delay depends on how much bandwidth is
allocated to the drop-tail queue. We are able to satisfy a
mean delay requirement for the web and CBR connections
by properly adjusting the parametermaxth1. For example, the
maxth1 of the RED+Tail scheme is set to be30Kbytes so that
the expectation of mean delay at the drop-tail queue is about
80ms. However, the service rateC1 reaches its maximum
C1max when q1 > minth1. The actual mean delay should
be larger than expected. Our simulation results show that the
mean delay of web and CBR traffic is around110ms.

Figures 7 and 8 show the mean receive rate and throughput
of FTP, web and CBR traffic. Both schemes achieve100%
utilization of the link bandwidth. Due to the unfair bandwidth
allocation in the RED+Tail scheme, FTP has a slightly smaller
throughput. However, the saved bandwidth allows web burst
to pass through the bottleneck link faster. Table III lists the
performance metrics of RED+Tail, Adaptive RED and the
traditional drop-tail scheme respectively.

Table IV compares the small web file delivery time under
different schemes. Since the RED+Tail policy has a small
packet loss rate, its delivery time is almost equal to the loss
free case in Table I. On the other hand, the Adaptive RED has
a loss rate4.5%, its delivery time is three times longer. Note
that the drop-tail queue has a similar loss rate (4.2%) with
Adaptive RED for web packets. However, the file delivery
time of the drop-tail scheme is about2.5 times longer than
Adaptive RED’s. This is mainly due to the long queuing delay
(0.34sec) of the drop-tail policy.

V. DYNAMIC THRESHOLDS FORADAPTIVE RED

The Adaptive RED relies on the dropping probability to
control the flow rates of TCP connections and keep the
average queue length in a desired region. However, for those
applications which have a large file to transfer, the goodput
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Fig. 4. Queue length of RED+Tail virtual queues: 10 FTP starting at t=0
go to virtual queue 2, and 800 Webs + 1 CBR starting at t=100 go to virtual
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is more important than the packet delay. The packet loss rate
is a key factor of connection goodput. Since the minimal and
maximal thresholds of the Adaptive RED scheme are fixed,
the dropping probability of RED must reach a high value to
restrict the flow rates. This high dropping probability causes
a great portion of retransmission and low goodput.

In order to control the flow rate and to keep a low packet loss
rate, we propose a dynamic threshold algorithm for Adaptive
RED scheme to guarantee the average packet loss rate in the
RED queue.

• D := maxth2 − minth2 and0 < γ < 1.
• if P̄d > PU , thenminth2 := minth2(1+γ), maxth2 :=
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minth2 + D.
• if P̄d < PL, thenminth2 := minth2(1−γ), maxth2 :=

minth2 + D,

where P̄d is the average dropping probability obtained by
EWMA algorithm and (PU , PL) are the desired region of
dropping probability. Note that the distanceD := maxth2 −
minth2 is a constant and these floating thresholds do not
change the current slope of dropping probability function.

Since the average TCP throughput is proportional to
1

RTT
√

Pd
, increasing the thresholds also increases the queuing

delay and causes TCP to reduce its flow rate without a high
packet loss rate. Figure 9 is a comparison of the queue length
behavior between fixed and dynamic threshold schemes. There
are20 persistent FTP servers sharing a6Mbps bottleneck link.
Another20 FTP servers arrive at time100s and leave at time
300s. Figure 9 shows that the fixed threshold scheme has a
small varying queue length and a large dropping probability
(0.05). In comparison with the previous, the dynamic threshold
scheme has a much lower average dropping probability (0.014
with PU =0.02, PL=0.01), but a higher packet delay. Note that
both schemes achieve100% link utilization so that each FTP
connection has the same throughput. However, with a much
lower packet loss rate, the dynamic threshold scheme achieves
a higher goodput. This dynamic threshold scheme allows us to
consider the trade off between packet loss and queuing delay
in an Adaptive RED queue.
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Fig. 9. Average queue length of fixed and dynamic thresholds: 20 FTP
starting at t=0, and 20 starting at t=100s, C=6Mbps.
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Fig. 10. Dropping probability of fixed and dynamic thresholds: 20 FTP
starting at t=0, and 20 starting at t=100s, C=6Mbps.

VI. CONCLUSIONS

In this paper, we first demonstrated the vulnerability of
Adaptive RED scheme to bursty traffic and then proposed
a parallel virtual queue structure to eliminate unnecessary
packet loss. A simple detection algorithm is employed to
separate the short-life and long-life TCP connections into
different virtual queues. The packet loss rate and mean delay
can be greatly reduced by dynamic bandwidth allocation and
active queue management with a parallel queue structure. This
scheme combines the advantages of drop-tail and Adaptive
RED policies. The simulation results in the study show that
this scheme achieves a shorter mean delay for real time
applications and keeps a high throughput for the best effort
connections as well as greatly reduces the packet loss rate in
both queues.

This parallel queue structure also provides more degree
of freedom to control the router by considering different
bandwidth allocation policies and dynamic thresholds for
Adaptive RED. Here, the bandwidth allocation policy is a
simple function of the current virtual queue length. However,
it is well-known that web traffic is strongly correlated and has
a long range dependency property. Based on observations of
the ”recent past” traffic, the future bandwidth demand of the
web traffic was shown to be predictable. In future work, we
will consider the optimal bandwidth allocation policy based
on the prediction of congestion level.
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